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Figure 1: Several steps of cable positioning on a cardoor. This quasi-dynamic simulation runs at real-time.

Abstract

In this work, we propose interactive and physically based animation
of one-dimensional deformable models using geometrically exact
energy formulation. The proposed mechanical model has a high
level of accuracy: it is based on continuous spline support and con-
tinuum mechanics media equations. We also detail a new efficient
solving scheme, that can automatically switch between dynamic
and static during simulation. With this scheme, we want to raise
inconsistencies that could show up when human user is interacting
with a physical simulation. We finally present a practical example
in which the proposed model provides high-quality interaction.

CR Categories: I.6 [Simulation and Modeling]— [J.6]:
Computer-Aided Design

Keywords: dynamic and quasi-static splines, real-time simulation

1 Introduction

Interacting with virtual deformable objects always need compro-
mise between accuracy and efficiency. In most applications, sim-
ulation of one-dimensional objects necessitates both of these prop-
erties: numerical coarseness often leads to unrealistic geometrical
configurations, while excessive computational cost drastically di-
minishes the interaction quality, as well as physical behavior per-
ception. In many industrial cases, numerous applications need such
accurate, and fast simulated object: e.g., virtual cable positioning
(in car R&D industry), surgical threads for interactive medical sim-
ulation. Dynamic splines were introduced by Qin and Terzopoulos
[Qin and Terzopoulos 1996]. They proposed for such simulations
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a formal framework where it is actually possible to provide geo-
metrically exact (hence non-linear) formulation of energies making
accurate simulation possible [Theetten et al. 2006].

For most known simulation methods of deformable objects, one has
to choose between quasi-static and dynamic models before simula-
tion. Most of previous works give no or very simple arguments for
this choice, this is actually not easy to do in the general case. Static
models are classically considered as being faster to solve than dy-
namic models. Yet, in some cases, dynamic simulation, using ex-
plicit integration can be of the same computation cost. On the other
hand, dynamic models are supposed to be more accurate because
they provide dynamic transitions between rest states. These tran-
sitions can be false if the simulation timestep is not adapted to the
propagation of deformation wave (although such error is most often
difficult to perceive with interactive simulations). That is the reason
why we propose a new scheme that can switch between static and
dynamic on-line. Decision/adaptation is autonomous and the rules
are based on two consistency criterions: the non-singularity of the
mechanical system and the temporal coherency between simulation
and interaction. The decision rules provide an estimation of the
need for dynamic simulation. The temporal consistency considera-
tion is close to the real-time assumption (i.e. computation cost for
one simulation step remains lower than the timestep for dyncamic
simulation). Yet, we intend our model to be used on very general
frameworks, not necessarily based on real-time operating systems.
In that context, guaranteeing rigorous real-time dynamic simulation
is so far pure illusion. When not suitable, or too expensive for the
considered time step, quasi-static simulation is used as an alterna-
tive.

The proposed model is hence able to automatically adapt to the
considered simulation context, and provides user with the feeling
that simulation is always dynamic. Because of this flexibility, we
call the resulting model Quasi-Dynamic Splines. In the present ar-
ticle, we identify the following scientific contributions: first, a high
performance and real-time version of the Geometrically Exact Dy-
namic Spline (GEDS) model, introduced in [Theetten et al. 2006].
The presented algorithm complexity is a linear function depend-
ing on the control point amount. It is based on a linearly implicit
integration scheme where the stiffness matrix is analytically com-
puted. Second, an efficient solving scheme, that can automatically
switch between dynamic and quasi-static equilibrium and guaran-
tees, to some extent, real-time simulation. This implies two points:
to handle the practical switch and to provide a satisfactory set of de-
terministic rules that prevent simulation from excessive numerical
inertia in the decision process.
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The remainder of the paper is organized as follows: next section de-
scribes recent related works on dynamic splines and real-time sim-
ulation. Section 3 provides a short overview of the geometrically
exact dynamic spline, that we use as a basis for the main result of
this article. Section 4 describes a solving scheme that is convenient
to static and dynamic simulation. Finally, section 5 presents a dy-
namic switch between dynamic and quasi-static simulations, that
preserves mechanical accuracy, and significantly improves compu-
tation efficiency.

2 Previous works

For most unconstrained Computer Aided Design applications,
splines are probably the most classical tool for 1D objects. Dy-
namic splines were introduced by Qin and Terzopoulos [Qin and
Terzopoulos 1996]. Some other one-dimensional models exist,
from most computationally efficient to most numerically accurate.
Cosserat models [Pai 2002],[Wakamatsu and Hirai 2004],[Grégoire
and Schömer 2006] and Super-Helices [Bertails et al. 2006]. The
reader can refer to [Theetten et al. 2006] for a detailed discussion
on wire models.

As far as we are concerned, the dynamic spline model still remains
the best choice for efficient and accurate simulation. The model of
Qin and Terzopoulos [Qin and Terzopoulos 1996], Dynamic Non-
Uniform Rational B-Splines (DNURBS), first combined spline rep-
resentation with physics laws, using a lagrangian form of new-
ton equation. Nocent and Rémion [Nocent and Rémion 2001] de-
fined the Dynamic Material Splines (DMS), a full Lagrange-based
simulation framework for splines. They considered spline control
points as the degrees of freedom of the underlying continuous ob-
ject. Lenoir [Lenoir et al. 2004b] introduced a curvature energy
formulation for DMS that was not geometrically exact, but provid-
ing real-time manipulations, as well as adaptive simulations[Lenoir
et al. 2005]. Using a background in mechanics consisting of elas-
ticity and plasticity theories, Theetten & al proposed a deformable
model for one-dimensional objects: Geometrically Exact Dynamic
Splines (GEDS) [Theetten et al. 2006]. This approach addresses re-
versible and irreversible deformations, like stretching, twisting and
bending, and can even detect fracture. This model provides both
accurate mechanical simulation as well as quick calculation. How-
ever, using the forces with an adaptive Implicit Euler scheme still
lacks of efficiency to provide real-time for all geometrical and ma-
terial configurations, even if remains most of the time interactive.

Baraff used a linearly Implicit Euler integration to simulate cloth
with large steps [Baraff and Witkin 1998], involving forces and
force derivatives. We adopt the same method but we rely here
on an energy formulation that encompasses all aspects of the one-
dimensional object: stretching, twisting and bending.

Dynamic effects are not always required to provide a realistic sim-
ulation. Inertia and viscoelasticy can be neglected to obtain a static
system, when the frequency of excitation is lower than roughly one-
third of the structure’s natural frequency. This assumption is very
conventional, quasi-static simulations are much more convenient
and cheap to do. Not only there are very few dynamic models of
one-dimensional elements except for spline based-on simulation,
but also there is no contribution, to our knowledge, on a dynamic
scheduler that can switch between quasi-static and dynamic simu-
lation. However, in the real-time community, Cortes & al [Cortes
et al. 2005] presented a quasi-static approach where a number of
schedules and switching points are prepared at design-time, so that
at run-time the quasi-static scheduler only has to select, depending
on the actual execution times, one of the precomputed schedules.
Moreover, Redon [Redon et al. 2005] & al proposed an adaptive

algorithm for computing forward dynamics of articulated bodies,
which can automatically simplify the dynamics of a multi-body
system, based on the desired number of degrees of freedom and
the location of external forces and active joint forces. The simpli-
fication allows them to achieve up to two orders of magnitude per-
formance improvement. This is a piece of evidence that adaptive
solving methods of simulation can really improve performance.

3 Geometrically Exact Dynamic Splines

In this section, we present the core elements of GEDS model: the
Lagrange equations of kinetic and potential energies and the equiv-
alent matrix system in both static and dynamic cases.

3.1 GEDS formulation

A one-dimensional element is entirely described by a field that can
be decomposed in two fields: a position field r = (x,y,z), which
determinates neutral fiber f position, and a rotation field θ , which
provides the roll of the cross-section. These fields are described by
a set of polynomial spline curves: q = (r,θ) = (x,y,z,θ). Each
resulting spline is given by q(u) = ∑n

i=1 bi(u)qi, where bi are the

ith spline basis functions of the control points qi, and u is between
0 and ℓ, the length of the neutral fiber. Arc length is denoted by s.
The derivative of control point q, position r and roll θ with respect
to u are denoted by q′,r′ and θ ′ respectively. The displacement
elements ds and du are interrelated by ds = ‖r′‖du. We also assume
that the one-dimensional cross-section is constant along the spline.
Since control points completely define the position of the spline
and the orientation of the cross-sections, they can be considered
as the degrees of freedom of the system and used in the Lagrange
equations (1).

The Lagrange equations involve the kinetic energy T and the po-
tential energy U of the system. The kinetic energy is the energy of
motion whereas the potential energy is the stored energy of position
possessed by an object. F is the sum of external forces. Assuming
the mass distribution to be homogeneously distributed between the
n degrees of freedom qi of the object,

∀i ∈ {1, ...,n},
d

dt

(

∂T

∂ q̇i

)

= Fi −
∂U

∂qi

(1)

Several parameters and relations characterize a material; all the in-
volved quantities are described below to solve the Lagrange equa-
tions.

Since the one-dimensional object is specified by position and ro-
tation, its kinetic energy T comprises translation energy and rota-
tional energy. Translation energy corresponds to the displacement
of control points and rotation energy is due to the motion of cross-
sections around the neutral axis. We define the inertia matrix, de-
noted J, which is the same everywhere along the spline, since di-
ameter is constant. Spline kinetic energy T is then formulated by
the following integration along the beam:

T =
1

2

∫ L

0

dq

dt

t

J
dq

dt
ds, J =







µ 0 0 0
0 µ 0 0
0 0 µ 0
0 0 0 Io






(2)

µ corresponds to linear density, Io to the polar momentum of inertia
and t denotes a transpose.

Potential energy U is composed of gravitation energy and strain
energy and refers to some elasticity and beam theory. We define
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a strain vector ε , which is composed of three scalar components:
stretching strain εs, twisting strain εt and bending strain εb. From
these considerations, we provide a Hooke matrix H, which derives
from Hooke’s law. Assuming cross-section is circular and its diam-
eter D constant, Spline strain energy U thus yields:

U =
1

2

∫ L

0
εt

Hεds, H =
D2π

4





E 0 0

0 GD2

8 0

0 0 ED2

16



 (3)

where E is the Young modulus and G is the shear modulus For more
details, please see [Courbon 1980]).

3.2 Dynamic and quasi-static systems

This subsection explains how, from the above equations, to evalu-
ate practically the linear systems to be solved in both quasi-static
and dynamic cases. We consider here kinetic and potential energies
(eq. 2, 3)with the Lagrange equations (eq. 1). Replacing q by the
expression given in equation 3.1 in a similar way as described by

Nocent and Rémion [Nocent and Rémion 2001], yields: d
dt

∂T
∂ q̇i

=

∑n
j=1 J

∫ L
0 (bi(s)b j(s))ds

d2q j

dt2 . Considering J
∫ L

0 (bi(s)b j(s))ds and

d2q j

dt2 as matrices M and vector A components Mi, j and A j respec-

tively, this equation yields: d
dt

∂T
∂ q̇i

= ∑n
j=1 Mi, jA j . Considering all

degrees of freedom, this sum or Kinetic term can consequently be
written as a matrix-vector product: MA.

The derivatives of strain energies with respect to generalized co-
ordinates compose the right term of the Lagrange equations 1:

Pi = − ∂U
∂qi

= − 1
2

∫ L
0

∂ε t Hε
∂qi

ds; they are homogeneous to three gen-

eralized forces : stretching force Ps, twisting force Pt and bending
force Pb. Their calculation is detailled in appendix A. Considering
all degrees of freedom, the right term can consequently be written
as a sum of external force vector and generalized potential force
vector: F+P.

The Lagrange equations (eq. 1) result in: MA = F+P. This system
is to be solved when dynamic simulation is needed. Static equilib-
rium does not involve kinetic energy. In the later case, just consider
the right term of the system: 0 = F+P.

3.3 Accurate dynamic splines

In this subsection, we provide a geometrically exact formulation of
stretching, twisting and bending strains εs, εt and εb, in large rota-
tions (or large displacements). Such terms allow accurate results.
We lay stress on the deformation model of our object: it is ma-
terially linear elastic (small strains) but geometrically exact (large
rotations). The stretching strain εs is defined by εs = 1 − ‖r′‖.
The twisting strain εt comprises two scalar parts: geometrical or

Frenet twisting τ and roll θ . It yields: εt = θ ′ + τ = θ ′ + r′×r′′·r′′′

‖r′×r′′‖2 .

The bending strain εb is equal to the scalar Frenet curvature k:

εb = k =
‖r′×r′′‖
‖r′‖3 . Accuracy of GEDS is well demonstrated in

[Theetten et al. 2006]. In this paper, the focus is laid on efficiency.

4 Making GEDS efficient

The model described in the previous section is mechanically accu-
rate. However, it suffers, in regard of high-level interaction quality,

from the main drawback that the global numerical solving algo-
rithm is not efficient enough. An adaptive/iterative implicit scheme
does not converge quickly due to the cost of the equation non-
linearities, whereas an explicit scheme lacks of stability especially
for high stiffness. The compromise of a linearly implicit Euler
scheme has proved to be an efficient and fast convergent numeri-
cal method to simulate deformable objects like cloths [Baraff and
Witkin 1998], while keeping the benefits of non-linearities. It con-
sists in derivating the forces with respect to the degrees of freedom
to linearly approximate the force of the following time step, as a
curve is approximated localy by its tangent. This method is accu-
rate enough to solve a large time step in only one iteration.

4.1 Linearization of the generalized force P

Considering t the current time step and t + ∆t the following time
step, the sampled Lagrange equations give the following expres-
sion: Mq̈(t + ∆t) = F + P(q(t + ∆t)). This non-linear system is
computationally too expensive to be solved in an iterative scheme
(Newton-Raphson or conjugate gradient method) in a garanteed
real-time simulation context. We propose to use a linearized ex-
pression of the generalized force P(q(t + ∆t)). Denoting K(q(t))
the hessian matrix of the system, the system now yields:

Mq̈(t +∆t)+K(q(t))∆q = F+P(q(t)) (4)

where ∆q = q(t +∆t)−q(t).

4.2 Linearly Implicit Euler integration scheme

To solve the resulting system, we use a classical Implicit Euler inte-
gration scheme; this results in a linearly Implicit Euler integration:

(

M

∆t2
+K(q(t))

)

∆q(t) =
M

∆t
V(t)+F+P(q(t)) (5)

where V(t) = q̇(t) is the velocity vector of the spline. The corre-
sponding static system yields:

K∆q = F+P (6)

The generalized force P and the stiffness matrix K expressions are
detailled in appendix A. Note that if ∆t tends to infinity, then equa-
tion 5 tends to equation 6, that is, the dynamic system tends to a
static system. In our practical test, and without loss of generality,

we use 3th order splines, like Catmull-Rom splines. Basis functions
involve 4 parametric segments.

4.3 Constrained dynamic splines

The spline-based model is continuous, that is, mechanically de-
fined everywhere along the one-dimensional object. A force may
consequently be applied everywhere, but interacting with the ma-
nipulated object remains quite difficult. This is the reason why we
use Lagrangian multipliers: they allow us to set the position or the
direction of any point of the one-dimensional object. For further in-
formation on how to constrain a spline with Lagrangian mulitpliers,
see [Lenoir et al. 2004a].

4.4 Solving the resulting system

The matrix K is positive definite banded and symmetric. Unfor-
tunately, the Lagrange multipliers turn the positive definite system
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into an indefinite system. So we solve the system with a LU decom-
position for banded matrix. Moreover, the step computation time
cost is constant for both dynamic and quasi-static systems. Note
that x,y,z and θ generalized force components are linked and there-
fore can not be solved separatly, contrary to [Lenoir et al. 2004a].
However, an assemblage of splines connected in various locations
will obviously grow the bandwidth of the stiffness matrix, the worst
case being connecting the two ends of the spline. The solution time
may then quickly start to dominate the simulation. A sparse ma-
trix solving algorithm should then be used. To further reduce the
error and improve stability, we may use a Newton’s Steepest De-
scent Method [Evtushenko et al. ]. So far, we simply use a dis-
placement step ceiling. This ceiling avoid large displacements that
would make the model leaves its linearization domain.

4.5 Overall algorithm

For the sake of clarity, algorithm 1 provides a global overview of the
simulation algorithm of a GEDS, excluding the following described
quasi-dynamic decision scheme.

Algorithm 1 Physically-based spline algorithm

Initialization
while simulation do

for all spline samples do
Compute strain forces:Ps, Pt , Pb

Add external forces and insert Lagrange multipliers: F,L
Compute stiffness matrix K

if Dynamic System then

Add control point velocities M
V
∆t and inertia M

∆t2

end if
LU solving for band matrix: get ∆qi, update qi

end for
end while

5 Quasi-dynamic consistent simulation

The aim of this paper is to provide precise and interactive mechan-
ical simulation. However, a compromise between accuracy and ef-
ficiency has most of the time to be balanced. A way of increasing
efficiency is to simplify physics, but we are looking for accurate re-
sults. Another way is to consider static models instead of dynamic
ones. Static models are classically considered as being faster to
solve than dynamic models. On the other hand, dynamic models
are supposed to be more accurate because they provide dynamic
transitions between rest states and they are even necessary to de-
scribe some physical behavior like oscillations. In this paper, we
propose to assemble accuracy and efficiency when possible dur-
ing simulation, by switching the simulation from dynamic to quasi-
static or from quasi-static to dynamic. In this section, we present
our method, and we detail two different heuristics to engage the
switch.

5.1 Dynamic-static switch

From the matrix systems point of view, switching from static equa-
tions (6) to dynamic equations ((5) consists in adding the mass con-

tribution M

∆t2 on matrix and the inertia contribution M
∆t V(t) on the

operand.

When the switch is performed from static to dynamic, the initial
conditions (position and velocity) must be given. It means that,

even during the static simulation, a velocity is evaluated. This eval-
uation is performed using the computation time tc between two suc-
cessive equilibrium states: V = ∆q/tc.

In the static case, the matrix may be singular: the stiffness matrix K,
on his own, is singular but the lagrangian constraints L can help the
definition. On the opposite, the mass matrix M is always defined.
Then, the first heuristic for the decision of a switch is based on the
system singularity.

The use of dynamic differential equation and their integration in-
troduce the notions of time step ∆t. In interactive simulations, for
the temporal consistency we need to make the computation time
between two steps as close as possible to ∆t. Moreover, this time
step also depends on the mechanical eigenfrequency of the struc-
ture, and is related to the length of the element by the deformation
propagation. Thus, the second heuristic is based on the ability for
the dynamic simulation to respect temporal consistency.

5.2 Non singularity as heuristic rule

Let’s consider the unconstrained static equation 6. From the con-
sideration of overall equilibrium of the structure, the system con-
tains six dependent equations corresponding to the six rigid-body
degrees of freedom. This dependence will render the matrix K sin-
gular. Our first heuristic considers that it is not possible to perform
a static computation unless rigid-body degrees of freedom are con-
straint by Lagrange multipliers which removes the singularity. A
singularity test on the static system matrix is quite expensive, so
we propose a simplified heuristic based on the Degrees of Free-
dom (DOFs) constrained by Lagrange multipliers. We consider that
rigid-body motion is removed when:

• Four DOFs of a point (x,y,z,θ) and its local tangent are con-
straints (= 6 DOFs)

• Four DOFs of two different points of the spline, at least, are
constraints (= 2×4 DOFs)

5.3 Temporal consistency as heuristic rule

To integrate differential equations from mechanical dynamics, we
need a numerical integration scheme and a time step. The choice
of this time step is not easy. Indeed, by its mechanical properties
(mass, damping, stiffness), a structure have eigenmodes of defor-
mation that propagates in time. Wu et al. [Wu et al. 2001] proposed
a formula to obtain the time step limit ∆tcrit in order to have stable

behavior in explicit schemes: ∆tcrit = h

√

2ρ
E , where h is related to

the size of the elements, ρ is the material density and E the Young
modulus.

Implicit time integration has the advantage of being uncondition-
ally stable. However, it does not mean that we can chose any time
step. A deformation eigenfrequency of our object, w, according to

Shannon’s theorem, will be sampled only if: 2π
∆t ≥ w. Otherwise,

this frequency will be filtered by the implicit scheme. Moreover, the
deformation eigenfrequencies are changing according to state of the
constraints that are applied on the spline. The more constraints are
numerous, the more eigenfrequencies are high and the dynamical
system is likely to be over damped if ∆t is not adapted. We propose
a simplified rule to change ∆t during the simulation of the dynamic
spline: ∆t0 is evaluated at the beginning of the simulation when no
constraint are applied on the cable. Then, at each step, we evalu-
ate the maximum length of the spline without any constraint l f ree.
The ratio between this length and the initial length linit is used to

balance the value of the time step: ∆t =
l f ree

linit
∆t0.
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We recall that our target is to perform interactive physical simula-
tion, so the time passed between two steps needs to be close to ∆t.
However, it is not possible to guaranty that the computation time tc
will never exceed ∆t. So we propose to measure tc during simula-
tion in order to anticipate the moment when temporal consistency
will not be held. This anticipation rule is based on tc measured in
previous step. If it exceeds 95% of the supposed ∆t for this step,
the simulation is switch to static. In order to avoid a permanent
switch between static and dynamic models, we propose to create a
hysteresis by introducing an smaller value for switching from static
to dynamic: for instance, we used 0.9∆t (see Algorithm 2).

Algorithm 2 Quasi-dynamic algorithm

tc = 0.9∆t0;
Dynamic System = true;
while Simulation do

beginTimeMeasure();

∆t =
l f ree

linit
∆t0;

if !Dynamic System then
V = ∆q/tc

end if
if singularityTest() then

Dynamic System = true;
else

if tc > 0.95∆t then
Dynamic System = false;

else if tc < 0.9∆t then
Dynamic System = true;

end if
end if
Compute mechanics () {see Algorithm 1}
tc = elapsedTimeMeasured()
sleep(∆t − tc);

end while

5.4 Discussion

These two heuristic rules are fully compatible and somehow go
to the same direction: when the dynamic spline model is under-
constrained, the matrix system size is smaller so the computation
time is better and the eigenfrequencies are lower so the time step
can be quite large. All parameters make a dynamic simulation
possible and the singularity criterion will enforce it. On the con-
trary, when the model is over-constrained, the singularity criterion
allows a static simulation which seems to be more adapted: com-
putation time is longer and eigenfrequencies are higher, so the time
step is small. In section 4.4, we mentioned that the robustness of
the method was reinforced by a displacement ceiling. This ceil-
ing ensures that the future configuration of the dynamic spline is
not too far from the current configuration, which would distort the
linearized model. As the ceiling limits the displacement for one
computation step (it is somehow a speed limit), it can be seen as an
artificial damping. However, it means that the equilibrium state can
be reach in more than only one step even if in static theory, there is
no transition states before two equilibrium states. But, in practice,
we find convenient to use these transitions to feed the animation be-
cause it helps a smooth switch from dynamic to static simulation.

6 Results

The model described in this paper has been implemented in C++.
We performed several tests using a 1.6GHz Intel Pentium M and a
ATI X600 graphic card. We solve the resulting system by using the
Intel Math Kernel Library (MKL), which includes highly optimized

Figure 2: Computation time cost of a simulation step for a LU de-
composition and solving, depending on the control point amount,
on a simple Pentium M 1.6Ghz.

LAPACK routines for the platform we work on. The figure 2 sums
up computations costs for a LU decomposition for band matrix. We
can notice several interesting characteristics. First, our algorithm is
fully linear time with the number of control point n. Second, quasi-
static and dynamic systems are nearly as fast to compute and solve;
it facilitates much the switching between them. Third, a major part
of the step computation is dedicated to the matrix filling (80% with
20 or more control points). This task is consequently the bottle-
neck of our algorithm. This indeed justifies the very intensive care
that has been taken in the present work about optimizing K and
F computation. For the same number of degree of freedom, the
resulting one-dimensional object simulation is 6 times faster than
Gregoire’s model [Grégoire and Schömer 2006]. Because of the
non-linear geometry that is used, one has also to keep in mind that
each degree of freedom (control point) has a greater power of repre-
sentation than classical linear discretization, based on mass-springs.

We illustrate the potential benefit of our model on an application of
virtual cable positioning on the inner structure of a car door. Sev-
eral steps are shown in figure 1. The purpose is to test compatibility
between planned fixing clip positions, and mechanical cable prop-
erties. Car engineers still need to build prototypes, since existing
solutions are not accurate enough. Our model can prevent them
from undergoing this fastidious and inevitable step. In this appli-
cation, fixing clips are mechanically modeled as a set of lagrangian
constraints. In our application, we consider simple fixed point con-
straints; if larger clips were needed, combination of fixed points,
and fixed first derivative constraints would provide satisfactory re-
sults. During the interactive manipulation, when the cable meets a
fixing clip, we create a point constraint. Solving these constraints
gives the required forces or multipliers λ to maintain the global
equilibrium of the cable. If a resulting force overwhelms the fixing
clip strength in a determinated direction, the clip fails to keep the
cable: the corresponding constraint is deleted. This real-time sim-
ulation of a 18 control point spline uses quasi-static and dynamic
integration. It dynamically switches from dynamic to static when
the cable is pulled at the end of the companion video. The time
step of 1ms is computed in an average time of 0.8ms, with a decent
framerate of 140 frames per second.
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7 Conclusion and future works

We have proposed a deformable model for one-dimensional objects,
which gathers geometrically exact accuracy and efficient computa-
tion. Our simulation method is linear time and automatically switch
between dynamic and static representation according to the con-
text. The addressed class of simulated objects is quite large, both in
terms of geometry, and material, from surgical threads to steel ca-
bles. For taking best of available computation time, a natural (yet,
still challenging research), would be to adapt computation using a
dynamic adaptive repartition of control points. Adding the ability
to handle contact and friction with the environment would also be
needed for improving realism and simulation possibilities, in situa-
tions like suturing and assembling.
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A Calculation of generalized force vector

and stiffness matrix

A.1 Force

We recall here the expressions demonstrated in [Theetten et al. 2006] and simplify them

considering splines are initially straigth and not twisted. Deformed initial states involve

more complex expressions and limited developments. Furthermore, we introduce the

following variables for compactness of the equations: C = r′ × r′′, Pi = ∂C
∂ri

, Ri =

Cb′′′i −P
i × r′′′, Gi = C×P

i, Ti = R
i − 2τGi, Fi = T

i

‖C‖2 −
θ ′r′b′

i

‖r′‖2 and B
i, j = b′′j b′i − b′jb

′′
i .

For the sake of optimization, they should be precomputed at each time step before

generalized forces and stiffnesses. The stretching generalized force yields:

Pi
s (r) = −

πED2

4

∫ L

0

(

1−
‖r′0‖

‖r′‖

)

r′b′ ids

The twisting generalized force yields:

Pi
t (r) = −

πGD4

32

∫ L

0
εtF

ids,Pi
t (θ) = −

πGD4

32

∫ L

0
εt

bi
′

‖r′‖
ds

The bending generalized force yields:

Pi
b(r) = −

πED4

64

∫ L

0

G
i

‖r′‖6
−3

k2b′ ir
′

‖r′‖2
ds

A.2 Stiffness

The force expressions are used to calculate the stiffness matrix K, the hessian matrix of

the strain energy U . We define the set C = {α,β ,γ,θ} as a permutation of the elements

of the set {x,y,z,θ} Considering two elements c1 and c2 from C, an element of K

results in the following expression: K
i, j
c1 ,c2

(r,θ) = −
∂Pi

α (qc1
)

∂c
j
2

. As K is a symmetric

matrix, its elements have the following property: K
j,i

c2 ,c1
(r,θ) = K

i, j
c1 ,c2

(r,θ).

A.2.1 Stretching

K
i, j

s,(α,α)(r) =
πED2

4

∫ L

0

(

1+
r′α

2‖r′0‖

‖r′‖3
−

‖r′0‖

‖r′‖

)

b′ ib
′

jds

K
i, j

s,(α,β )(r) =
πED2

4

∫ L

0

r′α r′β ‖r′0‖

‖r′‖3
b′ib

′
jds

A.2.2 Twisting

K
i, j

t,(α,α)(r,θ) =
πGD4

32

∫ L

0
F

j
αF

i
α + εt

(

−2
R

i
αG

j
α +R

j
αG

i
α

‖C‖4
+8τ

G
i
αG

j
α

‖C‖4

K
i, j

t,(θ ,θ)(r,θ) =
πGD4

32

∫ L

0

b′ib
′
j

‖r′‖2
ds

. . . −2τ
P

i
βP

j

β +P
i
γP

j
γ

‖C‖2

)

ds

K
i, j

t,(α,θ)(r,θ) =
πGD4

32

∫ L

0

b′j

‖r′‖
F

i
α −

εt b
′
ib

′
jr

′
α

‖r′‖3
ds

‘

K
i, j

t,(α,β )(r,θ) =
πGD4

32

∫ L

0
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j
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α + εt

(

−P j
γ b′′′i +P

i
γ b′′′j +B
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ds

A.2.3 Bending

K
i, j

b,(α,α)(r) =
πED4
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∫ L

0

P
i
βP
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β +P
i
γP

j
γ
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(
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ds

K
i, j

b,(α,β )(r) =
πED4
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